
CS 161
Fall 2024

Introduction to
Computer Security Exam Prep 1

Q1 Security Principles (0 points)
Select the best answer to each question.

Q1.1 A company requires that employees change their work machines’ passwords every 30 days, but
many employees find memorizing a new password every month difficult, so they either write it
down or make small changes to existing passwords. Which security principle does the company’s
policy violate?

Defense in depth

Consider human factors

Ensure complete mediation

Fail-safe defaults

Solution: Here is an article that discusses why password rotation should be phased out in
practice, if you’re interested in reading more.

Q1.2 In the midst of a PG&E power outage, Carol downloads a simple mobile flashlight app. As soon as
she clicks a button to turn on the flashlight, the app requests permissions to access her phone’s
geolocation, address book, and microphone. Which security principle does this violate?

Security is economics

Separation of responsibility

Least privilege

Design in security from the start

Solution: A flashlight application does not actually need these permissions in order to execute
its functionality. It is over-permissioning its access to sensitive resources, violating the principle
of least privilege.

Q1.3 A private high school has 100 students, who each pay $10,000 in tuition each year. The principal
hires a CS 161 alum as a consultant, who discovers that the “My Finances” section of the website,
which controls students’ tuition, is vulnerable to a brute force attack. The consultant estimates
an attacker could rent enough compute power with $20 million to break the system, but tells the
principal not to worry because of which security principle?

Security is economics

Least privilege

Design in security from the start

Consider human factors

Solution: The website handles $1 million per year; not large enough that an attacker would
have an incentive to spend $20 million to steal it.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 7

https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes

Q1.4 The consultant notices that a single admin password provides access to all of the school’s funds
and advises the principal that this is dangerous. What principle would the consultant argue the
school is violating?

Don’t rely on security through obscurity

Separation of responsibility

Design security in from the start

Fail-safe defaults

Q1.5 Course staff at Stanford’s CS155 accidentally released their project with solutions in it! In order
to conceal what happened, they quickly re-released the project and didn’t mention what had
happened in the hope that no one would notice. This is an example of not following which security
principle?

Security is economics

Don’t rely on security through obscurity

Separation of responsibility

Know your threat model

Least privilege

None of these

Solution: Uhh, can you guess where we got the idea for this question? Hint: It wasn’t
Stanford...

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 7 –

Q2 x86 Potpourri (Extended) (0 points)

Q2.1 In normal (non-malicious) programs, the EBP is always greater than or equal to the ESP.

True False

Solution: True. Intuitively, the EBP represents the top of the stack frame and the ESP repre-
sents the bottom of the current stack frame. You can also follow the calling convention to see
why this is the case more concretely.

Q2.2 Arguments are pushed onto the stack in the same order they are listed in the function signature.

True False

Solution: Arguments are pushed in reverse order, since we want the first argument to be the
lowest offset from the EBP.

Q2.3 A function always knows ahead of time how much stack space it needs to allocate.

True False

Solution: This corresponds to Step 6 in the calling convention.

Q2.4 Step 10 ("Restore the old eip (rip).") is often done via the ret instruction.

True False

Solution: ret is equivalent to pop %eip.

Q2.5 In GDB, you run x/wx &arr and see this output:

0xfffff62a: 0xfffff70c

True or False: 0xfffff62a is the address of arr and 0xfffff70c is the value stored at arr.

True False

Solution: Left side is address, right side is values.

Q2.6 Which steps of the x86 calling convention are executed by the caller?

Solution: Steps 1, 2, 3, and 11 take place in the caller function.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 7 –

Q2.7 Which steps of the x86 calling convention are executed by the callee?

Solution: Steps 4-10 take place in the callee function.

Q2.8 What does the nop instruction do?

Solution: nop does nothing and moves the EIP to the next instruction.

Q2.9 Consider the following C code and some of its assembly:

void foo(int bar) {
// Implementation not shown

}

void main() {
int bar = 0;
foo(bar);

}

1 0 x08001008 : __________
2 0 x0800100c : c a l l foo
3 0 x08001010 : __________

Fill in the blanks for the instructions surrounding call foo in the assembly for main.

Solution: The first line will be pushing the arguments (in this case, a single 0, represented as
the immediate $0).

The last line will be Step 11 in the calling convention, moving the ESP back up past the
arguments pushed onto the stack.

1 0 x08001008 : push $0
2 0 x0800100c : c a l l foo
3 0 x08001010 : add $4 , %esp

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 7 –

Q2.10 EvanBot manages to set the value of the SFP of foo to 0x00000000 before foo returns. What is
most likely to happen next?

The program will crash immediately, before returning from foo.

The program will crash when attempting to return from foo.

The program will crash when attempting to return from main.

The program will finish executing without crashing.

Solution: When returning from foo, EBP will be set to null, but is otherwise not used (note
that no arguments are accessed in main). When main returns, ESP is set to EBP and then
popped, which will cause a segmentation fault crash due to trying to read from a null pointer.

Q2.11
RIP of main
pop %eip
SFP of foo

EvanBot has edited his program stack to look like the above. They reason that when foo returns,
"pop %eip" will be popped into the EIP, which is then executed to pop "RIP of main" into the EIP.
Note that the value "pop %eip" on the stack represents the actual value, not a variable name or
pointer.

Is this correct? Explain why or why not.

Solution: This will notwork because EIP holds an address to an instruction, not the instruction
itself. We would need to have the address of ret instead of ret itself.

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 7 –

Q3 Terminated (0 points)
Consider the following C code excerpt.

1 typedef s t ruc t {
2 char f i r s t [1 6] ;
3 char second [1 6] ;
4 } message ;
5
6 void main () {
7 message msg ;
8
9 f g e t s (msg . f i r s t , 1 7 , s t d i n) ;
10
11 for (in t i = 0 ; i < 1 6 ; i ++) {
12 msg . second [i] = msg . f i r s t [i] ;
13 }
14
15 p r i n t f ("%s \ n " , msg) ;
16 f f l u s h (s t d ou t) ;
17 }

Q3.1 Fill in the following stack diagram, assuming that the program is paused at Line 9.

Stack

Solution: Stack diagram:

RIP of main
SFP of main
msg.second
msg.first

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 7 –

Q3.2 Now, draw arrows on the stack diagram denoting where the ESP and EBP would point if the code
were executed until a breakpoint set on line 14.

Solution: ESP points to msg.first, EBP points to main's SFP.

You run GDB once, and discover that the address of the RIP of main is 0xffffcd84.

Q3.3 What is the address of msg.first?

Solution: SFP + msg.second + msg.first = 4 bytes + 16 bytes + 16 bytes = 36 bytes away,
so the address of msg.first is 0xffffcd84 - decimal 36 = 0xffffcd60.

Q3.4 Here is the fgets documentation for reference:

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from stream and
stores them into the buffer pointed to by s. Reading stops after an EOF
or a newline. If a newline is read, it is stored into the buffer. A
terminating null byte ('\0') is stored after the last character in the
buffer.

Evanbot passes in "hello" to the fgets call and sees the program print "hello". He expected it to
print "hellohello" since the first half was copied into the second half. Why is this not the case?

Solution: fgets puts a null terminator at the end, which stops the printf after the first string.

Q3.5 Evanbot passes in "hellohellohello!" (16 bytes) to the fgets call and sees the program print
"hellohellohello!hellohellohello!oaNWActYKJjflv5wI . . . " (not real output). The program seems to
have correctly copied the message, but EvanBot wonders why there seems to be garbage output at
the end. Why is this the case, and how can they fix their program?

Solution: fgets puts a null terminator at the end, which stops the printf after the first string.
However, the limit given is 17 instead of 16, which means the entire first buffer is filled with
non-null characters. This buffer is then copied to the one above it on the stack, erasing the
null terminator, and letting printf keep going up the stack past the end of the normal buffer.

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 7 –

