
CS 161
Fall 2024

Introduction to
Computer Security Discussion 1

Question 1 Security Principles
We discussed the following security principles in lecture (or in the textbook):

A. Know your threat model: Know your attacker
and their resources; the security assumptions
originally made may no longer be valid

B. Consider human factors: Security systems
must be usable by ordinary people

C. Security is economics: Security is a cost-
benefit analysis, since adding security usually
costs more money

D. Detect if you can’t prevent: If one cannot pre-
vent an attack, one should be able to at least
detect when an attack happens

E. Defense in depth: Layer multiple defenses to-
gether

F. Least privilege:Minimize how much privilege
you give each program and system compo-
nent

G. Separation of responsibility: Split up privilege,
so no one person or program has complete
power

H. Ensure complete mediation: Make sure to
check every access to every object

I. Consider Shannon’s Maxim: Do not rely on
security through obscurity

J. Use fail-safe defaults: If security mechanisms
fail or crash, they should default to secure
behavior

K. Design in security from the start: Retrofitting
security to an existing application after it has
been developed is a difficult proposition

Identify the principle(s) relevant to each of the following scenarios:

Note that there may be more than one principle that applies in some of these scenarios.

Q1.1 New cars often come with a valet key. This key is intended to be used by valet drivers who park
your car for you. The key opens the door and turns on the ignition, but it does not open the trunk
or the glove compartment.

Solution: Principle of least privilege. They do not need to access your trunk or your glove
box, so you don’t give them access to do so.

Q1.2 Many homeowners leave a house key under the floor mat in front of their door.

Solution: Shannon’s Maxim. The security of your home depends on the belief that most
criminals don’t know where your key is. With a modicum of effort, criminals could find your
key and open the lock.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 8



Q1.3 It is not worth it to use a $400,000 bike lock to protect a $100 bike.

Solution: Security is economics. It is more expensive to buy $400 bike lock than to simply
buy a new bike to replace it.

Q1.4 Social security numbers were not originally designed as a secret identifier. Nowadays, they are
often easily obtainable or guessable.

Solution: Design security from the start. Social security numbers were not designed to
be authenticators, so security was not designed from the start. The number is based on a
geographic region, a sequential group number, and a sequential serial number. They have since
been repurposed as authenticators.

Q1.5 Warranties on cell phones do not cover accidental damage, which includes liquid damage. However,
many consumers who accidentally damage their phones with liquid will wait for it to dry and then
claim that “it broke by itself”. To combat this threat, many companies have begun to include on
the product a small sticker that turns red (and stays red) when it gets wet.

Solution: There are probably two most relevant factors. “Consider human factors”: people
will always try to lie and you must account for that when creating a system. More importantly,
“Detect if you can’t prevent”: it’s prudent to try to add ways to detect something when creating
the phone since something like water damage is impossible to prevent.

Q1.6 Even if you use a password on your laptop lock screen, there is software that lets a skilled attacker
with specialized equipment bypass it.

Solution: Know your threat model: most petty thieves do not have access to this software.
(The software referenced is pcileech. The corresponding hardware is on my wishlist. -Keyhan
Vakil)

Q1.7 Shamir’s secret sharing scheme allows us to split a “secret” between multiple people so that all of
them have to collaborate in order to recover the secret.

Solution: Separation of responsibility: require everyone to come together to produce the
secret, preventing one person from using the secret alone.

Q1.8 Banks often make you answer your security questions over the phone. Answers to these questions
are “low entropy”, meaning that they are easy to guess. Some security-conscious people instead
use a random password as the answer to the security question. a However attackers can sometimes
convince the phone representative by claiming “I just put in some nonsense for that question”.

Solution: Consider human factors. The phone rep is inclined to believe the attacker is not
malicious (social engineering).

aQ: “What is your dog’s maiden name?”. A: “60ba6b1c881c6b87”

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 8 –

https://github.com/ufrisk/pcileech


Q1.9 Often times at bars, an employee will wait outside the only entrance to the bar, enforcing that people
who want to enter the bar form a single-file line. Then, the employee checks each individual’s ID
to verify if they are 21 before allowing them entry into the bar.

Solution: Ensure complete mediation. There is a single access point through which everyone
who wishes to enter the bar must be verified to be 21 before obtaining access.

Q1.10 Tesla vehicles come equipped with "Sentry Mode" which records footage of any break-ins to the
vehicle and alerts the vehicle owner of the incident.

Solution: Detect if you can’t prevent it. The vehicle owner learns about the intrusion into
their vehicle even if they were not able to prevent it.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 8 –



Question 2 Stack Diagram Practice
Here are the 11 steps for x86 calling convention for reference:

1. Push arguments onto the stack.

2. Push the old eip (rip) on the stack.

3. Move eip.

Execution changes to the callee now.

4. Push the old ebp (sfp) on the stack. (push %ebp)

5. Move ebp down. (mov %esp, %ebp)

6. Move esp down.

7. Execute the function.

8. Move esp up. (mov %ebp, %esp)

9. Restore the old ebp (sfp). (pop %ebp)

10. Restore the old eip (rip). (pop %eip)

11. Remove arguments from the stack.

Consider the following function.

1 in t swap ( in t ∗ num1 , in t ∗ num2 , in t a r r _ l o c a l [ ] ) {
2 in t temp = ∗num1 ;
3 ∗num1 = ∗num2 ;
4 a r r _ l o c a l [ 0 ] = ∗num1 ;
5 ∗num2 = temp ;
6 a r r _ l o c a l [ 1 ] = ∗num2 ;
7 return 0 ;
8 }
9
10 in t main ( void ) {
11 in t x = 6 1 ;
12 in t y = 1 ;
13 in t a r r [ 2 ] ;
14 swap (&x , &y , a r r ) ;
15 return 0 ;
16 }

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 8 –



Q2.1 Draw the stack diagram if the code were executed until a breakpoint set on line 4. Assume normal
(non-malicious) program execution. You do not need to write the values on the stack, only the
names. When drawing the stack diagram, assume that each row in your diagram doesn’t have to
represent 4 bytes in memory. The bottom of the page represents the lower addresses.

Stack

Solution: Stack diagram:

[4] RIP of main
[4] SFP of main
[4] x
[4] y
[8] arr
[4] int* arr_local
[4] int* num2
[4] int* num1
[4] RIP of swap
[4] SFP of swap
[4] temp

Q2.2 Now, draw arrows on the stack diagram denoting where the ESP and EBP would point if the code
were executed until a breakpoint set on line 4.

Solution: ESP points to temp, EBP points to swap's sfp.

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 8 –



Q2.3 The return instruction executes steps 8-10 of the calling convention. Draw arrows on the stack
diagram denoting where the ESP and EBP would point for each of these steps.

Solution:

• ESP and EBP point to swap's sfp

• ESP points to swap's rip and EBP points to main's sfp

• ESP points to int* num1 and EBP points to main's sfp. Note that EIP points the line
15 now.

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 8 –



Question 3 x86 Potpourri

Q3.1 In normal (non-malicious) programs, the EBP is always greater than or equal to the ESP.

True False

Solution: True

Q3.2 Arguments are pushed onto the stack in the same order they are listed in the function signature.

True False

Solution: Arguments are pushed in reverse order.

Q3.3 A function always knows ahead of time how much stack space it needs to allocate.

True False

Solution: This corresponds to Step 6.

Q3.4 Step 10 ("Restore the old eip (rip).") is often done via the ret instruction.

True False

Solution: ret is equivalent to pop %eip.

Q3.5 In GDB, you run x/wx &arr and see this output:

0xfffff62a: 0xfffff70c

True or False: 0xfffff62a is the address of arr and 0xfffff70c is the value stored at arr.

True False

Solution: Left side is address, right side is values.

Q3.6 Which steps of the x86 calling convention are executed by the caller?

Solution: Steps 1, 2, 3, and 11 take place in the caller function.

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 8 –



Q3.7 Which steps of the x86 calling convention are considered the "function epilogue"?

Solution: Steps 8-10.

Q3.8 What does the nop instruction do?

Solution: nop does nothing and moves the EIP to the next instruction.

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 8 –


