
CS 161
Fall 2024

Introduction to
Computer Security Exam Prep 2

Q1 Indirection (0 points)
Consider the following vulnerable C code:

1 # include < s t d l i b . h>
2 # include < s t r i n g . h>
3
4 s t ruc t l o g _ en t r y {
5 char t i t l e [8] ;
6 char ∗msg ;
7 } ;
8
9 void l o g _ ev en t (char ∗ t i t l e , char ∗msg) {
10 s i z e _ t l en = s t r n l e n (msg , 2 5 6) ;
11 i f (l e n == 256) return ; / ∗ Message t o o l o ng . ∗ /
12 s t ruc t l o g _ en t r y ∗ en t ry = ma l l o c (s i z eo f (s t ruc t l o g _ en t r y)) ;
13 entry −>msg = ma l l oc (2 5 6) ;
14 s t r c p y (entry −> t i t l e , t i t l e) ;
15 s t r n cpy (entry −>msg , msg , l en + 1) ;
16 add_ to_ l og (en t r y) ; / ∗ Imp l emen t a t i o n no t shown . ∗ /
17 }

Assume you are on a little-endian 32-bit x86 system and no memory safety defenses are enabled.

Q1.1 (3 points) Which of the following lines contains a memory safety vulnerability?

(A) Line 10

(B) Line 13

(C) Line 14

(D) Line 15

(E)

(F)

Solution: Line 14 uses a strcpy, which is not a memory-safe function because it terminates
only when it sees a NULL byte, which is under the control of the attacker. Note that line 15
uses a strncpy whose length parameter comes from strnlen, so it is safe.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 10

Q1.2 (3 points) Fill in the numbered blanks on the following stack and heap diagram for log_event.
Assume that lower-numbered addresses start at the bottom of both diagrams.

Stack Heap
msg 3
1 2
rip
sfp
len
entry

(G) 1 = entry->title 2 = entry->title 3 = msg

(H) 1 = entry->title 2 = msg 3 = entry->title

(I) 1 = title 2 = entry->title 3 = entry->msg

(J) 1 = title 2 = entry->msg 3 = entry->title

(K)

(L)

Solution: The two arguments, title and msg, must be on the stack, so 1 = msg.

Structs are filled from lower addresses to higher addresses, so 2 = entry->title and 3 =
entry->msg.

Using GDB, you find that the address of the rip of log_event is 0xbfffe0f0.

Let SHELLCODE be a 40-byte shellcode. Construct an input that would cause this program to execute
shellcode. Write all your answers in Python 2 syntax (just like Project 1).

Q1.4 (6 points) Give the input for the title argument.

Solution: The title will be used to overflow the title buffer in the struct to point the msg
pointer to the RIP. The input should thus be

'A' * 8 + '\xf0\xe0\xff\xbf'

Q1.5 (6 points) Give the input for the msg argument.

Solution: The first 4 bytes will be written in the location of the RIP, which should point to
the shellcode. Thus, our input should be

'\xf4\xe0\xff\xbf' + SHELLCODE

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 10 –

Q2 Stack Exchange (0 points)
Consider the following vulnerable C code:

1 # include <byteswap . h>
2 # include < i n t t y p e s . h>
3 # include < s t d i o . h>
4
5 void p r ep a r e _ i npu t (void) {
6 char b u f f e r [6 4] ;
7 i n t 6 4 _ t ∗ p t r ;
8
9 p r i n t f ("What i s the b u f f e r ? \ n ") ;
10 f r e a d (bu f f e r , 1 , 6 8 , s t d i n) ;
11
12 p r i n t f ("What i s the p o i n t e r ? \ n ") ;
13 f r e a d (& ptr , 1 , s i z eo f (u i n t 6 4 _ t ∗) , s t d i n) ;
14
15 i f (p t r < b u f f e r | | p t r >= b u f f e r + 6 8) {
16 p r i n t f (" P o i n t e r i s o u t s i d e b u f f e r ! ") ;
17 return ;
18 }
19
20 / ∗ R e v e r s e 8 b y t e s o f memory a t t h e a d d r e s s p t r ∗ /
21 ∗ p t r = bswap_64 (∗ p t r) ;
22 }
23
24 in t main (void) {
25 p r e p a r e _ i npu t () ;
26 return 0 ;
27 }

The bswap_64 function 1takes in 8 bytes and returns the 8 bytes in reverse order.

Assume that the code is run on a 32-bit system, no memory safety defenses are enabled, and there are
no exception handlers, saved registers, or compiler padding.

1Technically, this is a macro, not a function.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 10 –

Q2.1 (3 points) Fill in the numbered blanks on the following stack diagram for prepare_input.

1 (0xbffff494)
2 (0xbffff490)
3 (0xbffff450)
4 (0xbffff44c)

(A) 1 = sfp, 2 = rip, 3 = buffer, 4 = ptr

(B) 1 = sfp, 2 = rip, 3 = ptr, 4 = buffer

(C) 1 = rip, 2 = sfp, 3 = buffer, 4 = ptr

(D) 1 = rip, 2 = sfp, 3 = ptr, 4 = buffer

(E)

(F)

Solution: The rip is pushed onto the stack first, followed by the sfp, followed by the first local
variable buffer, followed by the second local variable ptr.

Q2.2 (4 points) Which of these values on the stack can the attacker write to at lines 10 and 13? Select all
that apply.

(G) buffer

(H) ptr

(I) sfp

(J) rip

(K) None of the above

(L)

Solution: At line 10, the attacker can write 68 bytes starting at buffer. This overwrites all
64 bytes buffer and the 4 bytes directly above it, which is the sfp.

At line 13, the attacker can write exactly 1 uint64_t * into ptr. This overwrites ptr, and
nothing else.

Notice that the rip cannot be directly overwritten.

Q2.3 (3 points) Give an input that would cause this program to execute shellcode. At line 10, first input
these bytes:

(A) 64-byte shellcode

(B) \xbf\xff\xf4\x4c

(C) \x4c\xf4\xff\xbf

(D) \xbf\xff\xf4\x50

(E) \x50\xf4\xff\xbf

(F)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 10 –

Q2.4 (3 points) Then input these bytes:

(G) 64-byte shellcode

(H) \xbf\xff\xf4\x4c

(I) \x4c\xf4\xff\xbf

(J) \xbf\xff\xf4\x50

(K) \x50\xf4\xff\xbf

(L)

Q2.5 (3 points) At line 13, input these bytes:

(A) \xbf\xff\xf4\x50

(B) \x50\xf4\xff\xbf

(C) \xbf\xff\xf4\x90

(D) \x90\xf4\xff\xbf

(E) \xbf\xff\xf4\x94

(F) \x94\xf4\xff\xbf

Solution: Line 10 writes 68 bytes into the 64-byte buffer, which lets us overwrite the sfp, but
not the rip.

Line 13 lets us write an arbitrary value into ptr,which is then dereferenced in a call to bswap_64.
This lets us reverse any 8 bytes in memory that we want.

The overarching idea here is to write the address of shellcode in the sfp, and then use the call
to bswap_64 to swap the sfp and the rip.

First, we write the 64 bytes of shellcode into the buffer. Then, we overwrite the sfp with
\xbf\xff\xf4\x50. These bytes are written backwards because bswap_64 will reverse all 8
bytes of the sfp and the rip. Finally, we write the address of the sfp, \x90\xf4\xff\xbf, into
ptr. These bytes are written normally because bswap_64 never affects ptr.

Suppose the current rip is 0xdeadbeef. Our input causes the 8 bytes starting at the sfp to be
\xbf\xff\xf4\x50\xef\xbe\xad\xde. When we call bswap_64 at the location of sfp, the
8 bytes starting at sfp are reversed, so they are now \xde\xad\xbe\xef\x50\xf4\xff\xbf.
Notice that the rip is now pointing to the address of shellcode in the correct little-endian order.

Note: Because you can overwrite the sfp, you might be tempted to use the off-by-one exploit
from Q4 of Project 1. However, this does not work here because you need enough space to
write the shellcode and the address of shellcode in the buffer, but the buffer only has space for
the shellcode.

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 10 –

Q2.6 (3 points) Suppose you replace 68with 64 at line 10 and line 15. Is this modified code memory-safe?

(G) Yes (H) No (I) (J) (K) (L)

Solution: No. If you make ptr point at one of the last 4 bytes of buffer (which passes the
check at line 15), it will cause part of the sfp to be overwritten. For example, if ptr is located 4
bytes before the end of buffer, the last 4 bytes of buffer will be swapped into the sfp.

Because you can overwrite the sfp, you could still exploit this modified code using the technique
from Project 1, Question 4 (although as mentioned above, you would need shorter shellcode).

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 10 –

Q3 Palindromify (0 points)
Consider the following C code:

1 s t ruc t f l a g s {
2 char debug [4] ;
3 char done [4] ;
4 } ;
5
6 void pa l i n d r om i f y (char ∗ input , s t ruc t f l a g s ∗ f) {
7 s i z e _ t i = 0 ;
8 s i z e _ t j = s t r l e n (i npu t) ;
9
10 while (j > i) {
11 i f (i npu t [i] != i npu t [j]) {
12 i npu t [j] = i npu t [i] ;
13 i f (s trncmp ("BBBB " , f −>debug , 4) == 0) {
14 p r i n t f (" Next : %s \ n " , i npu t) ;
15 }
16 }
17 i ++ ; j − − ;
18 }
19 }
20
21 in t main (void) {
22 s t ruc t f l a g s f ;
23 char b u f f e r [8] ;
24 while (s trncmp ("XXXX" , f . done , 4) != 0) {
25 g e t s (b u f f e r) ;
26 p a l i n d r om i f y (bu f f e r , &f) ;
27 }
28 return 0 ;
29 }

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or saved
registers in all questions.

Here is the function definition for strncmp:

int strncmp(const char *s1, const char *s2, size_t n);

The strncmp() function compares the first (at most) n bytes of two
strings s1 and s2. It returns an integer less than, equal to, or
greater than zero if s1 is found, respectively, to be less than, to
match, or be greater than s2

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 10 –

Q3.1 (3 points) Which of the following lines contains a memory safety vulnerability?

(A) Line 10

(B) Line 12

(C) Line 24

(D) Line 25

(E)

(F)

Solution: Line 25 contains a vulnerable call to gets, which will allow us to overflow buffer.

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 10 –

Q3.2 (3 points) Which of these inputs would cause the program to execute shellcode located at
0xbfff34d0?

(G) '\x00' + (11 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

(H) '\x00' + (19 * 'A') + '\xd0\x34\xff\xbf'

(I) (20 * 'X') + '\xd0\x34\xff\xbf'

(J) '\x00' + (7 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

(K) (16 * 'X') + '\xd0\x34\xff\xbf'

(L) None of the above

Solution: First, notice that buffer resides in main, so we’re going to attempt to overwrite
the RIP of main in this attack. Here’s what the stack diagram looks like:

[4] MAIN RIP
[4] MAIN SFP
[4] f.done
[4] f.debug
[8] buffer
...

At a high level, we’re going to follow our traditional attack structure: write past the end of
buffer and replace the RIP with the address of our shellcode. However, in order to force this
program to actually execute that shellcode, there are two while loops that we need to break
out of.

After our input is copied into buffer, we will enter the palindromify method. At this point,
we need a way to skip the while loop that attempts to copy non-matching values from the
end of input to the beginning - if we don’t skip this function, the RIP in our attack will be
overwritten by the garbage at the beginning.

To skip this loop, we add a null terminator at the beginning of our exploit - consequently,
when strlen(input) is called, it will return 0. At this point, j > i will evaluate to false,
and we’ll skip over the loop.

Then, when the method returns, we need a way to break out of the while loop in main -
otherwise, our program will continue to run forever. To do this, we need to set the f.done
flag on the stack to XXXX.

Because the struct resides above the buffer on stack, we can do this by placing XXXX precisely
at the location of f.done, which resides 12 bytes above buffer.

With this information, our exploit looks like this:

'\x00' + (11 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 10 –

Q3.3 (3 points) Assume you did the previous part correctly. At what point will the instruction pointer
jump to the shellcode?

(A) Immediately afterpalindromify returns

(B) Immediately after main returns

(C) Immediately after gets returns

(D) Immediately after printf returns

(E)

(F)

Solution: Because we overwrite the RIP in main, the shellcode will begin executing when
main returns.

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 10 –

