
CS 161
Fall 2024

Introduction to
Computer Security Discussion 2

Question 1 Software Vulnerabilities
For the following code, assume an attacker can control the value of basket, n, and owner_name passed
into search_basket.

This code contains several security vulnerabilities. Circle three such vulnerabilities in the code and
briefly explain each of the three on the next page.

1 s t ruc t c a t {
2 char name [6 4] ;
3 char owner [6 4] ;
4 in t age ;
5 } ;
6
7 / ∗ S e a r c h e s t h r ough a BASKET o f c a t s o f l e n g t h N (N sh ou l d be l e s s

than 3 2) . Adop t s a l l c a t s w i th age l e s s than 12 (k i t t e n s) .
Adopted k i t t e n s have t h e i r owner name o v e r w r i t t e n wi th OWNER_NAME
. R e t u r n s t h e number o f k i t t e n s adop t e d . ∗ /

8 s i z e _ t s e a r c h _ b a s k e t (s t ruc t c a t ∗ baske t , in t n , char ∗ owner_name) {
9 s t ruc t c a t k i t t e n s [3 2] ;
10 s i z e _ t num_ki t t ens = 0 ;
11 i f (n > 3 2) return −1 ;
12 for (s i z e _ t i = 0 ; i <= n ; i ++) {
13 i f (b a s k e t [i] . age < 1 2) {
14 / ∗ R e a s s i g n t h e owner name . ∗ /
15 s t r c p y (b a s k e t [i] . owner , owner_name) ;
16 / ∗ Copy t h e k i t t e n from th e b a s k e t . ∗ /
17 k i t t e n s [num_ki t t ens] = ba sk e t [i] ;
18 num_ki t t ens ++ ;
19 / ∗ P r i n t h e l p f u l mes sage . ∗ /
20 p r i n t f (" Adopt ing k i t t e n : ") ;
21 p r i n t f (b a s k e t [i] . name) ;
22 p r i n t f (" \ n ") ;
23 }
24 }
25 / ∗ Adopt k i t t e n s . ∗ /
26 a d o p t _ k i t t e n s (k i t t e n s , num_ki t t ens) ; / / Imp l emen t a t i o n no t shown

.
27 return num_ki t t ens ;
28 }

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 7

1. Explanation:

Solution: Line 12 has a fencepost error: the conditional test should be i < n rather than
i <= n. The test at line 11 assures that n doesn’t exceed 32, but if it’s equal to 32, and if all
of the cats in basket are kittens, then the assignment at line 17 will write past the end of
kittens, representing a buffer overflow vulnerability.

2. Explanation:

Solution: At line 12, we are checking if i <= n. i is an unsigned int and n is a signed int, so
during the comparison n is cast to an unsigned int. We can pass in a value such as n = -1
and this would be cast to 0xffffffff which allows the for loop to keep going and write past the
buffer.

3. Explanation:

Solution: On line 15 there is a call to strcpy which writes the contents of owner_name,
which is controlled by the attacker, into the owner instance variable of the cat struct. There
are no checks that the length of the destination buffer is greater than or equal to the source
buffer owner_name and therefore the buffer can be overflown.

Solution: Another possible solution is that on line 21 there is a printf call which prints the value
stored in the name instance variable of the cat struct. This input is controlled by the attacker and is
therefore subject to format string vulnerabilities since the attacker could assign the cats names
with string formats in them.

Some more minor issues concern the name strings in basket possibly not being correctly termi-
nated with ‘\0’ characters, which could lead to reading of memory outside of basket at line 21.

Describe how an attacker could exploit these vulnerabilities to obtain a shell:

Solution: Each vulnerability could lead to code execution. An attacker could also use the fencepost
or the bound-checking error to overwrite the RIP and execute arbitrary code.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 7 –

Question 2 Hacked EvanBot
Hacked EvanBot is running code to violate students’ privacy, and it’s up to you to disable it before it’s
too late!

1 # include < s t d i o . h>
2
3 void spy_on_s tuden t s (void) {
4 char b u f f e r [1 6] ;
5 f r e a d (bu f f e r , 1 , 2 4 , s t d i n) ;
6 }
7
8 in t main () {
9 spy_on_s tuden t s () ;
10 return 0 ;
11 }

The shutdown code for Hacked EvanBot is located at address 0xdeadbeef, but there’s just one problem—
Bot has learned a new memory safety defense. Before returning from a function, it will check that its
saved return address (rip) is not 0xdeadbeef, and throw an error if the rip is 0xdeadbeef.

Clarification during exam: Assume little-endian x86 for all questions.

Assume all x86 instructions are 8 bytes long.1Assume all compiler optimizations and buffer overflow
defenses are disabled.

The address of buffer is 0xbffff110.

Q2.1 (3 points) In the next 3 subparts, you’ll supply a malicious input to the fread call at line 5 that
causes the program to execute instructions at 0xdeadbeef, without overwriting the rip with the
value 0xdeadbeef.

The first part of your input should be a single assembly instruction. What is the instruction? x86
pseudocode or a brief description of what the instruction should do (5 words max) is fine.

Solution: jmp *0xdeadbeef

You can’t overwrite the rip with 0xdeadbeef, but you can still overwrite the rip to point at
arbitrary instructions located somewhere else. The idea here is to overwrite the rip to execute
instructions in the buffer, and write a single jump instruction that starts executing code at
0xdeadbeef.

1In practice, x86 instructions are variable-length.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 7 –

Q2.2 (3 points) The second part of your input should be some garbage bytes. How many garbage bytes
do you need to write?

(G) 0 (H) 4 (I) 8 (J) 12 (K) 16 (L)

Solution: After the 8-byte instruction from the previous part, we need another 8 bytes to fill
buffer, and then another 4 bytes to overwrite the sfp, for a total of 12 garbage bytes.

Q2.3 (3 points) What are the last 4 bytes of your input? Write your answer in Project 1 Python syntax,
e.g. \x12\x34\x56\x78.

Solution: \x10\xf1\xff\xbf

This is the address of the jump instruction at the beginning of buffer.

Q2.4 (3 points) When does your exploit start executing instructions at 0xdeadbeef?

(G) Immediately when the program starts

(H) When the main function returns

(I) When the spy_on_students function returns

(J) When the fread function returns

(K)

(L)

Solution: The exploit overwrites the rip of spy_on_students, so when the
spy_on_students function returns, the program will jump to the overwritten rip
and start executing arbitrary instructions.

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 7 –

Question 3 I Understood that Reference!
Consider the following vulnerable C code:

1 void vu l n e r a b l e (in t s t a r t , char ∗ p t r) {
2 p t r [s t a r t] = p t r [3] ;
3 p t r [s t a r t + 1] = p t r [2] ;
4 p t r [s t a r t + 2] = p t r [1] ;
5 p t r [s t a r t + 3] = p t r [0] ;
6 }
7
8 void he l p e r (i n t 8 _ t num) {
9 i f (num > 124) {
10 return ;
11 }
12 char a r r [1 2 8] ;
13 f g e t s (a r r , 1 28 , s t d i n) ;
14 v u l n e r a b l e (num , a r r) ;
15 }
16
17 in t main (void) {
18 in t y ;
19 f r e a d (&y , s i z eo f (in t) , 1 , s t d i n) ;
20 h e l p e r (y) ;
21 return 0 ;
22 }

Assume that:

• You are on a little-endian 32-bit x86 system.

• There is no other compiler padding or saved additional registers.

Write your answer in Python 2 syntax (just like in Project 1).

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 7 –

Q3.1 (3 min) Fill in the stack diagram below, assuming that execution has entered the call to
vulnerable:

RIP of main

SFP of main

RIP of vulnerable

SFP of vulnerable

Solution: Nothing too complicated about this stack diagram. Notice that when integer argu-
ments are passed to functions, their values are directly placed on the stack (not pointers, like
strings).

Stack

RIP of main

SFP of main

y

num

RIP of helper

SFP of helper

arr

ptr

start

RIP of vulnerable

SFP of vulnerable

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 7 –

For the rest of this question, assume that the RIP of main is located at 0xbfffdc0c and that your
malicious shellcode is located at 0xef302010.

In the next two subparts, construct an exploit that executes your malicious shellcode.

Q3.2 (5 min) Provide an input to the variable y in the fread in main.

For this subpart only, you may write a decimal number instead of its byte representation.

Solution: This attack involves noticing that we’re indexing into the ptr array using a value
that we control (we choose the value of start through the fread call in main). With this, we
can think about how to overwrite one of the RIP’s present on our stack. There’s a catch, though
- since start is restricted to values less than 127, and arr is 128 bytes long, we can’t write
over the RIP of helper; however, we can set start to a negative number to index downwards
and overwrite the RIP of vulnerable. That RIP lives three words below the start of the array,
so we start at array index -12.

Any number with the final byte set to '\xf4' will work. We want to choose some y such that,
when cast to the int8_t, it becomes -12.

Q3.3 (5 min) Provide an input to the variable arr in the fgets in helper.

Solution: We need to reverse the order of the bytes in our new RIP address, since they’re
read in reverse of our normal direction (starting at ptr[3] and going to ptr[0]). Once this
address is placed into the array, it’ll be in little-endian format.

'\xef\x30\x20\x10'

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 7 –

