
CS 161
Fall 2024

Introduction to
Computer Security Exam Prep 4

Q1 EvanBlock Cipher (24 points)
EvanBot invents a new block cipher chaining mode called the EBC (EvanBlock Cipher). The encryption
diagram is shown below:

AES Encryption AES Encryption AES EncryptionK K K

IV

P1 P2 P3

C1 C2 C3

Q1.1 (2 points) Write the encryption formula for Ci, where i > 1. You can use EK and DK to denote
AES encryption and decryption respectively.

Solution: C1 = EK(P1 ⊕ IV )
Ci = EK(Pi ⊕ Pi−1 ⊕ Ci−1)

Q1.2 (2 points) Write the decryption formula for Pi, where i > 1. You can use EK and DK to denote
AES encryption and decryption respectively.

Solution: P1 = DK(C1)⊕ IV
Pi = DK(Ci)⊕ Pi−1 ⊕ Ci−1

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 7



Q1.3 (4 points) Select all true statements about this scheme.

It is IND-CPA secure if we use a random IV for every encryption.

It is IND-CPA secure if we use a hard-coded, constant IV for every encryption.

Encryption can be parallelized.

Decryption can be parallelized.

None of the above

Solution: This scheme actually exists in real life; it’s called AES-PCBC, where PCBC stands
for Propagating Cipher Block Chaining Mode. (The CBC here is the same as the CBC in
AES-CBC.)

AES-PCBC is IND-CPA secure with random IVs. Intuitively, notice that AES-PCBC looks quite
similar to AES-CBC, except we are sending both the ciphertext and plaintext into the next
block cipher encryption, instead of just the ciphertext.

If we use the same IV for every encryption, AES-PCBC is deterministic, so it’s not IND-CPA
secure.

Encryption cannot be parallelized because you have to wait for the current block’s ciphertext
to be computed (which requires the current block cipher encryption to run) before you can
pass the current block’s ciphertext into the next block cipher encryption.

Decryption cannot be parallelized because you have to wait for the current block’s plaintext
to be computed (which requires the current block cipher decryption to run) before you can
pass the current block’s plaintext into the XOR that computes the next block’s plaintext.

Q1.4 (4 points) Alice has a 4-block message (P1, P2, P3, P4). She encrypts this message with the scheme
and obtains the ciphertext C = (IV, C1, C2, C3, C4).

Mallory tampers with this ciphertext by changing the IV to 0. Bob receives the modified ciphertext
C ′ = (0, C1, C2, C3, C4).

What message will Bob compute when he decrypts the modified ciphertext C ′?

X represents some unpredictable “garbage” output of the AES block cipher.

(P1, P2, P3, P4)

(X,P2, X, P4)

(X,X,P3, P4)

(X,P2, P3, P4)

(X,X,X,X)

None of the above

Solution: Modifying any ciphertext block in AES-PCBCwill cause itself and all future plaintext
blocks to become garbage (hence the "propagate").

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 7 –



Alice has a 3-block message (P1, P2, P3). She encrypts this message with the scheme and obtains the
ciphertext C = (IV, C1, C2, C3).

Mallory tampers with this ciphertext by swapping two blocks of ciphertext. Bob receives the modified
ciphertext C ′ = (IV, C2, C1, C3).

When Bob decrypts the modified ciphertext C ′, he obtains some modified plaintext P ′ = (P ′
1, P

′
2, P

′
3).

In the next three subparts, write expressions for P ′
1, P ′

2, and P ′
3.

Q1.5 (4 points) P ′
1 is equal to these values, XORed together. Select as many options as you need.

For example, if you think P ′
1 = P1 ⊕ C2, then bubble in P1 and C2.

P1 P2 P3 IV C1 C2 C3

Solution:
We denote the "original" ciphertext blocks by Ci and the modified ciphertext blocks by C ′

i. For
example, C ′

1 = C2 in our given scheme. This is likewise the case for plaintext blocks.

We have C1 = EK(P1 ⊕ IV ) and C2 = EK(P2 ⊕ C1 ⊕ P1) from the encryption/decryption
formulas.

After swapping, when we decrypt P1, we plug in C2’s value for C ′
1:

P ′
1 = DK(C ′

1)⊕ IV

P ′
1 = DK(C2)⊕ IV

P ′
1 = DK(EK(P2 ⊕ C1 ⊕ P1))⊕ IV

P ′
1 = P2 ⊕ C1 ⊕ P1 ⊕ IV

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 7 –



Q1.6 (4 points) P ′
2 is equal to these values, XORed together. Select as many options as you need.

P1 P2 P3 IV C1 C2 C3

Solution:

We have C1 = EK(P1 ⊕ IV ) and C2 = EK(P2 ⊕ C1 ⊕ P1).

We know from the previous subpart that P ′
1 = P2 ⊕ C1 ⊕ P1 ⊕ IV . Key to this problem is

that the decryption formulas will use the "new" values P ′, C ′ for all values since that’s what
Bob receives/decrypts.

After swapping, when we decrypt P2, we plug in C1’s value:

P ′
2 = DK(C ′

2)⊕ P ′
1 ⊕ C ′

1

P ′
2 = DK(C1)⊕ P ′

1 ⊕ C ′
1

P ′
2 = DK(EK(P1 ⊕ IV ))⊕ P ′

1 ⊕ C ′
1

P ′
2 = (P1 ⊕ IV )⊕ P ′

1 ⊕ C ′
1

P ′
2 = (P1 ⊕ IV )⊕ (P2 ⊕ C1 ⊕ P1 ⊕ IV )⊕ C2

P ′
2 = P2 ⊕ C1 ⊕ C2

Q1.7 (4 points) P ′
3 is equal to these values, XORed together. Select as many options as you need.

P1 P2 P3 IV C1 C2 C3

Solution:

We know P ′
2 = P2 ⊕ C1 ⊕ C2 from the previous subpart and C3 = EK(P3 ⊕ P2 ⊕ C2).

Plug in decryption formula for P3:

P ′
3 = DK(C ′

3)⊕ P ′
2 ⊕ C ′

2

P ′
3 = DK(C3)⊕ P ′

2 ⊕ C ′
2

P ′
3 = DK(EK(P3 ⊕ P2 ⊕ C2))⊕ P ′

2 ⊕ C ′
2

P ′
3 = (P3 ⊕ P2 ⊕ C2)⊕ (P2 ⊕ C1 ⊕ C2)⊕ C1

P ′
3 = P3

This turns out to be a unintended side effect of PCBC (and not a very good one).

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 7 –



Q2 Cryptography: All or Nothing Security (20 points)
EvanBot decides to modify AES-CTR in order to provide all-or-nothing security. All-or-nothing
security means that modifying any part of the ciphertext will make the entire plaintext decrypt to some
sort of "garbage" output.

EvanBot designs the following scheme to encryptM = (M1,M2, . . . ,Mn):

1. EvanBot generates a new random key K2 on top of the original key K1. Note that K2 is not
known to the decryptor, even thoughK1 is.

2. EvanBot transformsM into a "pseudomessage"M ′ by settingM ′
i = Mi ⊕ EK2(i).

3. EvanBot adds the blockM ′
n+1 = H(M ′

1 ⊕ 1)⊕H(M ′
2 ⊕ 2)⊕ . . .⊕H(M ′

n ⊕ n)⊕K2.

4. EvanBot derives the ciphertext C = Enc(K1,M
′) using AES-CTR with keyK1 and IV IV .

First, we will walk through the decryption process for this all-or-nothing scheme. Fill in the blanks for
the following by answering the multiple-choice subparts below:

1. CodaBot receives C .

2. CodaBot decrypts C with keyK1 to recover .

3. CodaBot setsK2 =M ′
n+1⊕ .

4. CodaBot finds i-th original message block asMi = .

Q2.1 (2 points) Select the correct option for the blank on Step 2:

K2

H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n)

M ′
i ⊕ EK2(i)

M ′

Solution: Wefirst need to decrypt the ciphertextC ,which decrypts toM ′ (the pseudomessage)
as stated in Step 4 of the encryption process.

Q2.2 (2 points) Select the correct option for the blank on Step 3:

K2

H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n)

M ′
i ⊕ EK2(i)

M ′

Solution: We now need to recoverK2 in order to decrypt the pseudomessage into the real
message. By re-arranging the formula from Step 3 of the encryption process, we find that
K2 = M ′

n+1 ⊕H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n).

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 7 –



Q2.3 (2 points) Select the correct option for the blank on Step 4:

K2

H(M ′
1 ⊕ 1)⊕ . . .⊕H(M ′

n ⊕ n)

M ′
i ⊕ EK2(i)

M ′

Solution: We can now recover the real message by XOR-ing out EK2(i) with the i-th block
per Step 2 of the encryption process.

Q2.4 (5 points) Explain how modifying an arbitrary ciphertext block prevents recovery of any block
of the original message.

HINT: Show that we cannot recover K2 if any ciphertext block is modified.

Solution: Say we modify some Ci to C ′
i. We then decryptM ′

i (the i-th pseudomessage block)
to some garbageM∗i

i .

Recall that we recover K2 by XOR-ing the hashes of all M ′
i with the last ciphertext block.

Therefore, since one of the inputs to these hashes is wrong, the entire XOR will be irrecoverably
incorrect, since a small change in a hash input will lead to a wildly different output (avalanche
effect). This is important to note, because otherwise an attacker could predictably modify the
ciphertexts to cancel out their differences and recover the sameK2 (see next subpart).

Q2.5 (5 points) EvanBot wonders if it’s really necessary to have the hash function used in Step 3, and
decides to replace Step 3 with this new step:

3. EvanBot adds the block (M ′
1 ⊕ 1)⊕ (M ′

2 ⊕ 2)⊕ . . .⊕ (M ′
n ⊕ n)⊕K2 to the end ofM ′.

Show that it is possible to tamper with the order of the message blocks, i.e. by swapping two blocks.
Note that "tamper" means the message will be decrypted to something different, but not all blocks
will turn to garbage (i.e. not "all or nothing").

Solution: Saywe swapM ′
1 andM ′

2. When decrypting, the clientwill then successfully compute
K2 with the expression above.

Since we are using AES-CTR,we decryptM1 = EK(IV +1)⊕C2 andM2 = EK(IV +2)⊕C1.
Note that theC1, C2 in the decryption equations are swapped since we swapped the ciphertext.
We then see that (since XOR is commutative):

((EK(IV + 1)⊕ C2)⊕ 1)⊕ ((EK(IV + 2)⊕ C1)⊕ 2) . . .

= ((EK(IV + 1)⊕ C1)⊕ 1)⊕ ((EK(IV + 2)⊕ C2)⊕ 2) . . .

= (M ′
1 ⊕ 1)⊕ (M ′

2 ⊕ 2) . . .

This does not hold with the hash version, since the inputs to the hash changing even a little bit
change the output dramatically (i.e. the XOR does not commute through the hash function).

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 7 –



Q2.6 (4 points) Does the original all-or-nothing scheme (from the beginning of the question) provide
integrity?

Yes No

Explain why or why not.

Solution: This scheme does not provide integrity, since we cannot detect tampering. The
all-or-nothing property just causes them to decrypt garbage, but this is not sufficient to provide
integrity. For example, tampering with a normal AES ciphertext (without MAC) also causes
them to decrypt a (at least partially) garbage message, but does not provide integrity.

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 7 –


